3.82 \(\int \frac{\csc (c+d x)}{a+b \sin ^2(c+d x)} \, dx\)

Optimal. Leaf size=55 \[ \frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \cos (c+d x)}{\sqrt{a+b}}\right )}{a d \sqrt{a+b}}-\frac{\tanh ^{-1}(\cos (c+d x))}{a d} \]

[Out]

-(ArcTanh[Cos[c + d*x]]/(a*d)) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Cos[c + d*x])/Sqrt[a + b]])/(a*Sqrt[a + b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0638404, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3186, 391, 206, 208} \[ \frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \cos (c+d x)}{\sqrt{a+b}}\right )}{a d \sqrt{a+b}}-\frac{\tanh ^{-1}(\cos (c+d x))}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]/(a + b*Sin[c + d*x]^2),x]

[Out]

-(ArcTanh[Cos[c + d*x]]/(a*d)) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Cos[c + d*x])/Sqrt[a + b]])/(a*Sqrt[a + b]*d)

Rule 3186

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, -Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 391

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\csc (c+d x)}{a+b \sin ^2(c+d x)} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \left (a+b-b x^2\right )} \, dx,x,\cos (c+d x)\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{a d}+\frac{b \operatorname{Subst}\left (\int \frac{1}{a+b-b x^2} \, dx,x,\cos (c+d x)\right )}{a d}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \cos (c+d x)}{\sqrt{a+b}}\right )}{a \sqrt{a+b} d}\\ \end{align*}

Mathematica [C]  time = 0.308812, size = 143, normalized size = 2.6 \[ -\frac{\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b}-i \sqrt{a} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{-a-b}}\right )}{\sqrt{-a-b}}+\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b}+i \sqrt{a} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{-a-b}}\right )}{\sqrt{-a-b}}-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+\log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]/(a + b*Sin[c + d*x]^2),x]

[Out]

-(((Sqrt[b]*ArcTan[(Sqrt[b] - I*Sqrt[a]*Tan[(c + d*x)/2])/Sqrt[-a - b]])/Sqrt[-a - b] + (Sqrt[b]*ArcTan[(Sqrt[
b] + I*Sqrt[a]*Tan[(c + d*x)/2])/Sqrt[-a - b]])/Sqrt[-a - b] + Log[Cos[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]])/
(a*d))

________________________________________________________________________________________

Maple [A]  time = 0.102, size = 67, normalized size = 1.2 \begin{align*}{\frac{\ln \left ( -1+\cos \left ( dx+c \right ) \right ) }{2\,da}}-{\frac{\ln \left ( 1+\cos \left ( dx+c \right ) \right ) }{2\,da}}+{\frac{b}{da}{\it Artanh} \left ({b\cos \left ( dx+c \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)/(a+sin(d*x+c)^2*b),x)

[Out]

1/2/d/a*ln(-1+cos(d*x+c))-1/2/d/a*ln(1+cos(d*x+c))+1/d/a*b/((a+b)*b)^(1/2)*arctanh(cos(d*x+c)*b/((a+b)*b)^(1/2
))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+b*sin(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.90993, size = 440, normalized size = 8. \begin{align*} \left [\frac{\sqrt{\frac{b}{a + b}} \log \left (\frac{b \cos \left (d x + c\right )^{2} + 2 \,{\left (a + b\right )} \sqrt{\frac{b}{a + b}} \cos \left (d x + c\right ) + a + b}{b \cos \left (d x + c\right )^{2} - a - b}\right ) - \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right )}{2 \, a d}, -\frac{2 \, \sqrt{-\frac{b}{a + b}} \arctan \left (\sqrt{-\frac{b}{a + b}} \cos \left (d x + c\right )\right ) + \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) - \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right )}{2 \, a d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+b*sin(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(b/(a + b))*log((b*cos(d*x + c)^2 + 2*(a + b)*sqrt(b/(a + b))*cos(d*x + c) + a + b)/(b*cos(d*x + c)^
2 - a - b)) - log(1/2*cos(d*x + c) + 1/2) + log(-1/2*cos(d*x + c) + 1/2))/(a*d), -1/2*(2*sqrt(-b/(a + b))*arct
an(sqrt(-b/(a + b))*cos(d*x + c)) + log(1/2*cos(d*x + c) + 1/2) - log(-1/2*cos(d*x + c) + 1/2))/(a*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc{\left (c + d x \right )}}{a + b \sin ^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+b*sin(d*x+c)**2),x)

[Out]

Integral(csc(c + d*x)/(a + b*sin(c + d*x)**2), x)

________________________________________________________________________________________

Giac [B]  time = 1.13179, size = 135, normalized size = 2.45 \begin{align*} -\frac{\frac{2 \, b \arctan \left (\frac{b \cos \left (d x + c\right ) + a + b}{\sqrt{-a b - b^{2}} \cos \left (d x + c\right ) + \sqrt{-a b - b^{2}}}\right )}{\sqrt{-a b - b^{2}} a} - \frac{\log \left (\frac{{\left | -\cos \left (d x + c\right ) + 1 \right |}}{{\left | \cos \left (d x + c\right ) + 1 \right |}}\right )}{a}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+b*sin(d*x+c)^2),x, algorithm="giac")

[Out]

-1/2*(2*b*arctan((b*cos(d*x + c) + a + b)/(sqrt(-a*b - b^2)*cos(d*x + c) + sqrt(-a*b - b^2)))/(sqrt(-a*b - b^2
)*a) - log(abs(-cos(d*x + c) + 1)/abs(cos(d*x + c) + 1))/a)/d